Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1335519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515760

RESUMO

Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Ubiquitina , Ligases , RNA não Traduzido/genética , MicroRNAs/genética , Complexo de Endopeptidases do Proteassoma
2.
Arch Toxicol ; 97(5): 1195-1245, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947184

RESUMO

Cardiovascular disease (CVD) poses the leading threats to human health and life, and their occurrence and severity are associated with exposure to environmental pollutants. Per- and polyfluoroalkyl substances (PFAS), a group of widely used industrial chemicals, are characterized by persistence, long-distance migration, bioaccumulation, and toxicity. Some PFAS, particularly perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS), have been banned, leaving only legacy exposure to the environment and human body, while a number of novel PFAS alternatives have emerged and raised concerns, such as polyfluoroalkyl ether sulfonic and carboxylic acid (PFESA and PFECA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS). Overall, this review systematically elucidated the adverse cardiovascular (CV) effects of legacy and emerging PFAS, emphasized the dose/concentration-dependent, time-dependent, carbon chain length-dependent, sex-specific, and coexposure effects, and discussed the underlying mechanisms and possible prevention and treatment. Extensive epidemiological and laboratory evidence suggests that accumulated serum levels of legacy PFAS possibly contribute to an increased risk of CVD and its subclinical course, such as cardiac toxicity, vascular disorder, hypertension, and dyslipidemia. The underlying biological mechanisms may include oxidative stress, signaling pathway disturbance, lipid metabolism disturbance, and so on. Various emerging alternatives to PFAS also play increasingly prominent toxic roles in CV outcomes that are milder, similar to, or more severe than legacy PFAS. Future research is recommended to conduct more in-depth CV toxicity assessments of legacy and emerging PFAS and explore more effective surveillance, prevention, and treatment strategies, accordingly.


Assuntos
Ácidos Alcanossulfônicos , Doenças Cardiovasculares , Poluentes Ambientais , Fluorocarbonos , Masculino , Feminino , Humanos , Ácidos Alcanossulfônicos/toxicidade , Alcanossulfonatos , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Doenças Cardiovasculares/induzido quimicamente
3.
Front Mol Neurosci ; 15: 1004221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438184

RESUMO

Central nervous system (CNS) disease is a general term for a series of complex and diverse diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), CNS tumors, stroke, epilepsy, and amyotrophic lateral sclerosis (ALS). Interneuron and neuron-glia cells communicate with each other through their homeostatic microenvironment. Exosomes in the microenvironment have crucial impacts on interneuron and neuron-glia cells by transferring their contents, such as proteins, lipids, and ncRNAs, constituting a novel form of cell-to-cell interaction and communication. Exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs), regulate physiological functions and maintain CNS homeostasis. Exosomes are regarded as extracellular messengers that transfer ncRNAs between neurons and body fluids due to their ability to cross the blood-brain barrier. This review aims to summarize the current understanding of exosomal ncRNAs in CNS diseases, including prospective diagnostic biomarkers, pathological regulators, therapeutic strategies and clinical applications. We also provide an all-sided discussion of the comparison with some similar CNS diseases and the main limitations and challenges for exosomal ncRNAs in clinical applications.

4.
Sci Total Environ ; 847: 157443, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868369

RESUMO

Currently, cardiovascular disease (CVD) is a health hazard that is associated with progressive deterioration upon exposure to environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP) has been one of the focuses of emerging concern due to its ubiquitous nature and its toxicity to the cardiovascular (CV) system. DEHP has been noted as a causative risk factor or a risk indicator for the initiation and augment of CVDs. DEHP represents a precursor that contributes to the pathogenesis of CVDs through its active metabolites, which mainly include mono (2-ethylhexyl) phthalate (MEHP). Herein, we systematically presented the association between DEHP and its metabolites and adverse CV outcomes and discussed the corresponding effects, underlying mechanisms and possibly interventions. Epidemiological and experimental evidence has suggested that DEHP and its metabolites have significant impacts on processes and factors involved in CVD, such as cardiac developmental toxicity, cardiac injury and apoptosis, cardiac arrhythmogenesis, cardiac metabolic disorders, vascular structural damage, atherogenesis, coronary heart disease and hypertension. DNA methylation, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbance may pinpoint the relevant mechanisms. The preventive and therapeutic measures are potentially related with P-glycoprotein, heat-shock proteins, some antioxidants, curcumin, apigenin, ß-thujaplicin, glucagon-like peptide-1 receptor agonists and Ang-converting enzyme inhibitors and so on. Promisingly, future investigations should aid in thoroughly assessing the causal relationship and molecular interactions between CVD and DEHP and its metabolites and explore feasible prevention and treatment measures accordingly.


Assuntos
Doenças Cardiovasculares , Curcumina , Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Apigenina , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Dietilexilftalato/análogos & derivados , Dietilexilftalato/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ácidos Ftálicos/metabolismo
5.
Mol Ther Nucleic Acids ; 26: 828-848, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729251

RESUMO

Myocardial infarction (MI) is defined as cardiomyocyte death in a clinical context consistent with ischemic insult. MI remains one of the leading causes of morbidity and mortality worldwide. Although there are a number of effective clinical methods for the diagnosis and treatment of MI, further investigation of novel biomarkers and molecular therapeutic targets is required. Circular RNAs (circRNAs), novel non-coding RNAs, have been reported to function mainly by acting as microRNA (miRNA) sponges or binding to RNA-binding proteins (RBPs). The circRNA-miRNA-mRNA (protein) regulatory pathway regulates gene expression and affects the pathological mechanisms of various diseases. Undoubtedly, a more comprehensive understanding of the relationship between MI and circRNA will lay the foundation for the development of circRNA-based diagnostic and therapeutic strategies for MI. Therefore, this review summarizes the pathophysiological process of MI and various approaches to measure circRNA levels in MI patients, tissues, and cells; highlights the significance of circRNAs in the regulation MI pathogenesis and development; and provides potential clinical insight for the diagnosis, prognosis, and treatment of MI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...